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Figure 1: We visualize the principal components of point features learned by 2D and 3D self-
supervised models [28, 49], mapped to RGB colors. DINOv2 lacks geometric awareness, and Sonata
struggles to capture fine textures. Concerto integrates intra-modal self-distillation with cross-modal
joint embedding prediction, enabling a self-supervised point cloud transformer [47] to learn richer,
emerging spatial representations with fine-grained geometric and semantic consistency across views.

Abstract
Humans learn abstract concepts through multisensory synergy, and once formed,
such representations can often be recalled from a single modality. Inspired by
this principle, we introduce Concerto, a minimalist simulation of human concept
learning for spatial cognition, combining 3D intra-modal self-distillation with
2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns
more coherent and informative spatial features, as demonstrated by zero-shot
visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised
models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in
linear probing for 3D scene perception. With full fine-tuning, Concerto sets new
SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU
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on ScanNet). We further present a variant of Concerto tailored for video-lifted
point cloud spatial understanding, and a translator that linearly projects Concerto
representations into CLIP’s language space, enabling open-world perception. These
results highlight that Concerto emerges spatial representations with superior fine-
grained geometric and semantic consistency.

1 Introduction
Learning strong spatial representations in a self-supervised manner is foundational for spatial cog-
nition tasks, spanning from low-level machine perception to high-level reasoning in domains such
as autonomous driving [8, 38], mixed reality [7, 23, 37], and robotics [17]. Recent advances in
self-supervised learning have significantly improved foundational representation models for the two
dominant spatial modalities: 2D images [4, 12, 18, 51, 56] and 3D point clouds [29, 46, 49, 50, 53].
Without the need for human annotations, these models have demonstrated strong performance across
various downstream tasks by enabling the learning of geometry, and semantics at scale.

However, despite their individual successes within each data modality, our pilot study reveals that
self-supervised representations learned independently from images and point clouds do not fully
overlap. Specifically, concatenating features from self-supervised image models (e.g., DINOv2 [28])
and point cloud models (e.g., Sonata [49]) leads to improved linear probing performance, suggesting
that each modality captures complementary, rather than redundant, aspects of spatial information.
The observation hints at the existence of a more robust and rich feature space that emerges from
the interaction between 2D and 3D modalities, indicating the core aim of this research: to uncover
superior spatial representations through multi-modal self-supervised learning.

Multi-Sensory Learning

Single-Sensory Retrieval

See Touch

Touch Imagine

The concept of 
“Apple”

geometry, texture, 
semantics, etc.

Figure 2: The “Apple”
concept in cognition.

Our inspiration toward this target is rooted in how humans learn abstract
concepts: through multisensory synergy [6, 36]. Consider the example
of an apple (as illustrated in Fig. 2)—our understanding of it is not
limited to its visual appearance. Instead, the concept is formed through
repeatedly seeing, touching, and tasting apples, allowing us to internalize
its geometry, texture, and semantic meaning in a unified, predictive way.
This cognitive process reflects a continuous, cross-modal integration of
sensory data into a grounded concept space (Fig. 2 top). Yet once such
a representation is formed, it can be evoked from just a single modality:
seeing an image of an apple can vividly recall its weight and texture, just
as holding one can bring its color and shape to mind (Fig. 2 bottom). This
ability to retrieve rich, structured knowledge from partial sensory input
underscores the importance of learning modality-agnostic representations
that are both unified and predictive.

Driven by this vision, our methodology aims to offer a simple yet effective
imitation of human multisensory synergy. To this end, we compose a
Concerto of 2D-3D joint self-supervised learning, coupling intra-modal
self-distillation for point representations [28, 49] with cross-modal joint
embedding prediction from images to point clouds [26]. Ultimately, this training yields a self-
supervised PTv3 [47] model, pretrained on 40k raw point clouds and 300k images [1, 5, 7, 15,
33, 52, 60]. In addition, we present a variation of Concerto, augmented with an additional set of
50k point clouds with 200k corresponding images lifted from scene videos [61] via feed-forward
reconstruction [43], tailored for video-based spatial understanding. We also introduce an interlude
of Concerto: a learned translator that linearly projects self-supervised representations into CLIP’s
language space [27, 32], enabling open-world perception.

The intersection of 2D and 3D self-supervised learning in Concerto yields a powerful synergy,
enabling the emergence of superior spatial representations. PCA-colored visualizations reveal
that Concerto captures more coherent and informative spatial features than SOTA 2D or 3D self-
supervised models trained on a single modality (see Fig. 1). Concerto exceeds its predecessor,
Sonata, with a 4.8% improvement in linear probing, achieving 77.3% mIoU on ScanNet semantic
segmentation using a single linear layer. Notably, this performance also surpasses the concatenation
of Sonata and DINOv2 (1.4%), demonstrating that the multisensory synergy in Concerto exceeds
the representational upper bound achievable by single-modality self-supervised learning. With full
fine-tuning, Concerto achieves SOTA performance across a range of scene perception tasks. For
example, reaching 80.7% mIoU on ScanNet semantic segmentation.
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Semantic Segmentation ScanNet Val [15] ScanNet200 Val [35]

Method Type Encoder mIoU mAcc allAcc mIoU mAcc allAcc

DINOv2 [28] 2D Image SSL ViT-G 63.09 75.50 82.42 27.42 37.59 72.80
Sonata [49] 3D Point SSL PTv3-B 72.52 83.11 89.74 29.25 41.61 81.15
Sonata×DINOv2 3D SSL×2D SSL Both 75.91 85.36 91.25 36.67 46.98 82.85
Concerto (ours) 2D-3D Joint SSL PTv3-B 77.32 86.58 91.74 37.41 49.49 83.29

Table 1: Linear probing results on 3D semantic segmentation. We compare self-supervised
features learned from 2D, 3D, their feature concatenation, and our 2D-3D joint SSL model, Concerto
(as a preview). Notably, the concatenation of 2D and 3D features outperforms either modality alone,
suggesting that the two modalities encode complementary information. Concerto achieves the best
performance across all metrics, demonstrating its ability to learn superior spatial representations.

2 Beyond Single Modality: Toward a New World of Representations

This section presents a pilot study to explore high-level questions surrounding self-supervised
representations. These questions form the conceptual foundation of our research, and our methodology
emerges as a natural and simple response to the insights gained here.

2.1 Is There a Superior Representation Space Beyond Single-Modality Learning?

Self-supervised learning on 2D images and 3D point clouds has achieved remarkable progress in
visual representation learning. However, when trained independently, these models may capture only
modality-specific perspectives of the spatial world. Just as a person who has only seen an apple but
never tasted one may lack a sense of its flavor or texture, single-modal learning inevitably misses
critical dimensions of the world. This raises a fundamental question: Is there a superior representation
space that can emerge from the synergy between 2D and 3D modalities?

To probe this question, we begin with a simple pilot experiment: fusing self-supervised features from
image and point cloud models, prior to any explicit learning of cross-modal synergy. Specifically, we
select two representative self-supervised models trained independently on images (DINOv2 [28]) and
point clouds (Sonata [49]). We lift image features into 3D space using depth and camera parameters,
and concatenate them with point cloud representations to enable feature-level fusion. We benchmark
the 2D, 3D, and fused representations via linear probing on 3D scene-level semantic segmentation
using the ScanNet [15] dataset, with results presented in Tab. 1. Notably, this naive combination
outperforms both individual modalities, suggesting the presence of complementary information and
hinting at a richer representational space.

However, simply concatenating 2D and 3D self-supervised features, while yielding a stronger rep-
resentation space, still falls short of uncovering the unexplored new world we are seeking. This
approach lacks integration during learning and cannot fully capture the synergy that emerges when
modalities are learned together. The deeper insight lies in the potential of multi-modal joint represen-
tation learning—not only to align complementary signals across modalities, but also to form coherent,
predictive embeddings that generalize beyond their source. Ideally, such fused representations can be
retrieved from a single modality, even if they were originally learned through multi-modal interaction.
This form of joint 2D-3D representation learning is intuitive, as it mirrors how humans form concepts,
as discussed in Sec. 1 and illustrated in Fig. 2.

This insight leads to our methodology: designing a unified framework that learns to embed spatial
information through both intra-modal refinement and cross-modal prediction.

2.2 Can Multi-modal Self-Supervised Representations Speak the Language of Concepts?

Human language is often considered a compressed and symbolic interface to abstract concepts learned
through multisensory synergy [6]. If multi-modal self-supervised representation learning succeeds
in forming unified abstract concepts, then such representations should, in principle, be able to align
with human language—perhaps even through a simple linear projection. This perspective raises a
natural question: Can multi-modal self-supervised representations, learned entirely without human
language, speak the language of concepts?

We believe the answer to this question is ultimately yes. However, our current study is grounded
in the spatial domain, leveraging only 2D images and 3D point clouds. This limited sensory scope
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Figure 3: Overview of the Concerto architecture. Concerto simulates human multisensory synergy
by coupling (a) intra-modal self-distillation on 3D point clouds to progressively refine its internal
spatial representations (see Sec. 3.1), and (b) cross-modal joint embedding prediction that aligns
point features with corresponding image patch features using camera parameters (see Sec. 3.2). The
self-distillation branch (a) employs a restricted online clustering objective, while the joint embedding
prediction (b) applies a looser cosine similarity constraint. This dual self-supervised objective
encourages the emergence of coherent, modality-agnostic spatial representations.

makes it challenging to fully align with human language, which emerges from a far richer blend of
modalities. Still, we propose that linearly probing self-supervised representations into a language
embedding space, such as CLIP’s, offers a meaningful way to evaluate progress toward this goal.
Beyond serving as a diagnostic tool, this projection also extends the open-vocabulary capabilities of
self-supervised spatial representations, offering a step toward broader concept grounding.

We propose linear probing into the CLIP feature space as a next-level evaluation criterion for
self-supervised learning beyond single modality.

3 Concerto: Joint 2D-3D Self-Supervised Learning

This section introduces the joint 2D-3D self-supervised learning framework of Concerto. The
proposed architecture is intentionally simple, designed to highlight the power of multisensory synergy
through strong empirical performance. An overview of concerto architecture is present in Fig. 3.

3.1 Intra-Modal Self-Distillation

The primary duty of Concerto is to validate the superiority of multi-modal synergy, rather than
seeking innovation in single-modality self-supervised learning architecture. For this reason, the
intra-modal branch of Concerto builds upon the recent Sonata framework [49], which applies self-
distillation [10, 28] to learn point cloud representations without supervision. We briefly revisit this
architecture here and refer readers to the original Sonata paper for a detailed discussion on building a
reliable self-supervised framework for sparse and unstructured point cloud data.

The intra-modal self-distillation in Concerto focuses solely on the 3D domain, where a Point Trans-
former V3 [47] is trained to produce stable and predictive features through a teacher-student paradigm.
The student encoder is optimized to match the output of a momentum-updated teacher [18], using a
clustering-based objective [9] that promotes consistency across augmented views of the same point
cloud. A unique challenge in sparse point clouds is the geometric shortcut, where models collapse
to easily accessible low-level geometric cues. These cues are not learned but introduced implicitly
through the local kernel definitions of point cloud operators. Sonata mitigates this through several
micro-designs that obscure explicit spatial signals and encourage learning from input features. This
self-motivated refinement process allows the model to internalize geometric and structural priors
from 3D data, forming the foundation for multi-modal learning in Concerto.

3.2 Cross-Modal Joint Embedding Prediction

We introduce an additional cross-modal self-supervised objective that continuously stimulates synergy
from the image’s self-supervised representation into the point cloud domain. This design aligns with
the core vision of LeCun’s Joint Embedding Predictive Architecture (JEPA) [26], which advocates
learning by predicting latent representations across modalities using a conditional predictor. The
goal is to predict point cloud embeddings that match the associated pixel embeddings extracted from
a self-supervised image encoder (e.g., DINOv2 [28]). Empirically, we find that cosine similarity
provides the most effective criterion for training this predictive branch, and by applying strong point
cloud data augmentations and exploring less aggressive image augmentations compared to DINOv2,
Concerto learns more generalizable representations.
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In our implementation, we divided scenes with a large number of images into several data pieces.
Each one consists of one point cloud with 4 images. For scenes with fewer images (e.g., 5), we
retain the original dataset divisions. As shown in Fig. 3, we respectively obtain point representations
sx and image representations sy from the point encoder and image encoder. In the context of 2D
images and 3D point clouds, our predictor takes camera parameters as the condition z to establish
correspondences between image pixels and point cloud points. The details of this process are provided
in the Appendix. Then, for each image patch, we compute the mean of the features of points falling
within it to get predicted patch features ŝy from point clouds. Finally, we compute the loss D(sy, ŝy)
using cosine similarity. This process introduces 2D self-supervised features into 3D self-supervised
learning and stimulates the point intra-modal self-distillation process.

3.3 Synergy Emerged from Joint Self-Supervised Learning

The combination of intra-modal self-distillation and cross-modal joint embedding in Concerto
emerges as a strong synergy, surpassing single-modality learning and elevating the interaction be-
tween self-supervised point cloud and image representations beyond naive fusion. The complementary
cognitive signals from image self-supervised learning, through cross-modal joint embedding pre-
diction, encourage point intra-modal self-distillation to extend capacity beyond a single modality
and emerge a superior spatial representation surpassing the naive combination of self-supervised
features from images and point clouds. This process yields spatial representations that are more
expressive than those obtained by merely concatenating features from separate 2D and 3D models.
We believe this chain reaction is central to the design of Concerto. Notably, the architecture also
supports training on point clouds without paired images, enabling hybrid self-supervised learning
without compromising scalability on large-scale 3D datasets.

4 Experiments

We evaluate Concerto’s representations with various scene perception tasks using the same protocols
as Sonata [49]. Specifically, linear probing, which keeps the encoder frozen and adapts the upcasted
original scale features to downstream tasks; decoder probing, adding a lightweight decoder after
the frozen encoder to facilitate adaptation; and full fine-tuning, where the encoder and decoder are
optimized for downstream tasks. We further analyze Concerto’s key properties with these results.

4.1 Main Results
Semantic segmentation. In Tab. 2a, we compared Concerto with the previous 3D encoder Sonata [49]
on semantic segmentation tasks across multiple datasets: ScanNet [15], ScanNet200 [35], Scan-
Net++ [52], and S3DIS Area5 [1] with full fine-tuning. Across all datasets, Concerto achieves SOTA
performance with notable mIoU results, including 80.7% on ScanNet, 39.2% on ScanNet200, and
50.7% on ScanNet++. The most significant improvement is seen in the ScanNet200 dataset, which
contains 200 class categories. This suggests that while detecting fine-grained objects in sparse point
clouds remains challenging, joint 2D-3D cross-modal learning enables Concerto to capture detailed
semantic and geometry information, thus improving the model’s ability for such objects.
Instance segmentation. In Tab. 4, we further validate the robustness of Concerto across 4 widely
recognized instance segmentation benchmarks. Concerto demonstrates the strongest performance in
all evaluation methods. Notably, decoder probing on ScanNet outperforms full fine-tuning, suggesting
that Concerto learns rich, generalizable representations during pretraining without task-specific
adjustments. This demonstrates the advantage of leveraging general pretrained representations, which
reduces the risk of distorting pretrained representations and overfitting in fine-tuning.
Parameter efficiency. In Tab. 2b, we demonstrate Concerto’s parameter efficiency using the simplest
linear probing and decoder probing across 4 semantic segmentation benchmarks. In particular, Con-
certo outperforms supervised learning using the PTv3 backbone [47] on all benchmarks with decoder
probing. Even with linear probing, Concerto surpasses the supervised PTv3 on ScanNet200 [35] and
S3DIS [1]. Compared to Sonata [49], Concerto shows significant improvements on ScanNet200 [35]
and ScanNet++ [52] with linear probing (+8.1% and +6.7% respectively). These results highlight a
substantial improvement in scenes with larger numbers of classes.
Data efficiency. In Tab. 2c, we examine the data efficiency performance of Concerto on ScanNet
Efficient Datasets [19] with limited scenes and annotations. Concerto outperforms Sonata [49]
across all evaluation protocols. Notably, linear probing results surpass decoder probing and even full
fine-tuning (SFT) in extreme data-limited scenarios (1%, 5% limited scenes, and 20-point annotation
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Fine-Tuning Params ScanNet Val [15] ScanNet200 Val [35] ScanNet++ Val [52] S3DIS Area 5 [1]

Methods Learn. Pct. mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

◦ SparseUNet [14] 39.2M 100% 72.3 80.2 90.0 25.0 32.9 80.4 28.8 38.4 80.1 66.3 72.5 89.8
• PC [50] 39.2M 100% 72.3 80.9 90.1 26.2 33.0 79.9 29.2 39.7 82.7 68.1 73.5 90.0
•CSC [19] 39.2M 100% 72.8 81.0 90.7 26.9 33.7 80.6 32.5 41.1 83.7 70.7 76.4 90.8
•MSC [46] 39.2M 100% 75.7 83.4 91.3 32.0 41.6 82.3 39.4 49.6 84.9 70.7 76.1 91.0

◦ PTv3 [47] 124.8M 100% 77.6 85.0 92.0 35.3 46.0 83.4 48.2 61.6 87.0 73.4 78.9 91.7
•MSC [46] 124.8M 100% 78.2 85.3 92.2 33.4 43.7 83.4 48.7 61.9 87.2 69.9 74.9 91.2
• Sonata [49] 124.8M 100% 79.4 86.1 92.5 36.8 46.5 84.4 49.3 62.4 87.6 76.0 81.6 93.0
•Concerto 124.8M 100% 80.7 87.4 93.1 39.2 50.2 85.0 50.7 63.3 87.9 77.4 85.0 93.2

(a) Full fine-tuning. We evaluate Concerto using full fine-tuning, unlocking both encoder and decoder, and
compare semantic segmentation mIoU, mAcc, allAcc(%) results across 4 benchmarks.

Param. Efficiency Params ScanNet Val [15] ScanNet200 Val [35] ScanNet++ Val [52] S3DIS Area 5 [1]

Methods Learn. Pct. mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

◦ SparseUNet [14] 39.2M 100% 72.3 80.2 90.0 25.0 32.9 80.4 28.8 38.4 80.1 66.3 72.5 89.8
• PC [50] (lin.) <0.2M <0.1% 5.6 9.7 50.0 0.5 0.9 40.3 1.8 3.1 46.4 11.4 18.6 52.3
•CSC [19] (lin.) <0.2M <0.1% 12.6 18.1 64.2 1.3 2.1 53.0 2.8 4.5 53.6 24.4 32.0 66.4
•MSC [46] (lin.) <0.2M <0.1% 14.1 20.3 62.9 1.5 2.5 53.6 4.5 6.6 61.3 27.9 35.5 71.1

◦ PTv3 [47] 124.8M 100% 77.6 85.0 92.0 35.3 46.0 83.4 48.2 61.6 87.0 73.4 78.9 91.7
•MSC [46] (lin.) <0.2M <0.2% 21.8 32.2 65.5 3.3 5.5 57.5 8.1 11.9 64.7 32.1 42.4 70.9
• Sonata [49] (lin.) <0.2M <0.2% 72.5 83.1 89.7 29.3 41.6 81.2 38.9 52.8 84.3 72.3 81.2 90.9
•Concerto (lin.) <0.2M <0.2% 77.3 86.6 91.7 37.4 49.5 83.3 45.6 60.5 86.5 73.5 81.3 90.9

• Sonata [49] (dec.) 16.3M 13% 79.1 86.6 92.7 33.5 44.5 84.1 45.2 57.4 86.8 74.5 80.4 92.6
•Concerto (dec.) 16.3M 13% 79.5 87.6 92.6 37.8 50.5 84.1 48.3 62.3 87.7 75.5 84.2 92.3

(b) Parameter efficiency. By using linear probing (lin.) and decoder probing (dec.), we compare semantic
segmentation mIoU, mAcc, allAcc(%) results across 4 benchmarks.

Data Efficiency Limited Scenes (Pct.) Limited Annotation (Pts.)

Methods 1% 5% 10% 20% Full 20 50 100 200 Full

◦ PTv2 [45] 24.8 48.1 59.8 66.3 75.4 58.4 66.1 70.3 71.2 75.4
◦ SparseUNet [14] 26.0 47.8 56.7 62.9 72.2 41.9 53.9 62.2 65.5 72.2
•CSC [19] 28.9 49.8 59.4 64.6 73.8 55.5 60.5 65.9 68.2 73.8
•MSC [46] 29.2 50.7 61.0 64.9 75.4 61.0 65.6 68.9 69.6 75.4

◦ PTv3 [47] 25.8 48.9 61.0 67.0 77.2 60.1 67.9 71.4 72.7 77.2
• PPT [48] (sup.) 31.1 52.6 63.3 68.2 78.2 62.4 69.1 74.3 75.5 78.2
• Sonata [49] (lin.) 43.6 62.5 68.6 69.8 72.5 69.0 70.5 71.1 71.5 72.5
• Sonata [49] (dec.) 44.5 64.1 69.8 72.5 79.1 69.8 73.1 75.0 76.3 79.1
• Sonata [49] (f.t.) 45.3 65.7 72.4 72.8 79.4 70.5 73.6 76.0 77.0 79.4
•Concerto (lin.) 48.2 69.1 73.6 75.0 77.3 73.9 75.2 76.2 76.3 77.3
•Concerto (dec.) 44.6 67.9 73.7 74.6 79.5 72.6 74.6 76.7 77.6 79.5
•Concerto (f.t.) 46.5 69.0 75.3 76.1 80.7 73.3 76.7 77.6 78.4 80.7

(c) Data efficiency. We adopt the ScanNet Data Efficient [19] benchmark and compare the validation mIoU(%)
results of Concerto with previous methods in three evaluation protocols.
Table 2: Semantic segmentation. We train Concerto on ScanNet [15], ScanNet++ [52], Struc-
tured3D [60], S3DIS [1], ArkitScenes [7], and HM3D [33] datasets, utilizing ScanNet, ScanNet200,
ScanNet++, and S3DIS to evaluate the model by linear probing, decoder probing, and full fine-tuning
and ScanNet Data Efficient [19] to evaluate the data efficiency. The pre-training setting is the default,
described in Tab. 6. More specific pre-training details are available in the Appendix.
per scene). This observation aligns with findings in the image domain [57], where linear probing
outperforms full fine-tuning in out-of-distribution situations. In our case, when training on limited
data, the whole evaluation dataset becomes an out-of-distribution situation. This significant emerging
property reveals two key insights: more generalizable representations and more efficient adaptation
potential. This could signal a potential shift toward Low-Rank Adaptation (LoRA) methods [20] for
fine-tuning point cloud backbones. Detailed LoRA fine-tuning results are provided in the Appendix.

Video processing. As shown in the Fig. 4, the variation of Concerto demonstrates strong adaptability
to video-lifted data. We hypothesize that certain spatial-specific information is more effectively cap-
tured in the lifted space. By leveraging the current feed-forward reconstruction method VGGT [43]
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Scale ScanNet Val ScanNet200 Val ScanNet++ Val S3DIS Area 5

Model Size mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

16M(T) 67.7 78.5 87.4 24.9 34.4 79.3 33.7 45.9 82.7 65.2 73.6 88.6
39M(S) 76.6 86.6 91.5 34.4 46.3 83.1 43.1 57.6 86.2 71.3 80.4 90.1
108M(B) 77.3 86.6 91.7 37.4 49.5 83.3 45.6 60.5 86.5 73.5 81.3 90.9
207M(L) 77.5 86.6 92.1 38.6 49.8 83.9 46.3 59.9 86.7 73.7 81.4 91.1

Table 3: Scaling Up. Model T, S, B is trained on point cloud datasets, while Model L is trained on
point cloud datasets and an additional video dataset.
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Figure 4: Video spatial perception. Concerto can be directly applied to video-lifted data (top row).
The PCA visualizations (bottom two rows) illustrate that Concerto learns more fine-grained and
semantically consistent features compared to DINOv2.

Ins. Seg. Params ScanNet Val [15] ScanNet200 Val [35] ScanNet++ Val [52] S3DIS Area 5 [1]

Methods Learn. Pct.mAP25mAP50 mAP mAP25mAP50 mAP mAP25mAP50 mAP mAP25mAP50 mAP

◦ PTv3 [47] 124.8M 100% 77.5 61.7 40.9 40.1 33.2 23.1 46.3 39.6 25.4 55.7 49.4 37.8
•MSC [46] (lin.) <0.2M <0.2% 13.3 5.3 2.3 2.3 1.0 0.4 4.8 2.6 1.3 19.0 13.0 9.7
• Sonata [49] (lin.) <0.2M <0.2% 72.6 53.9 30.7 30.9 21.3 10.9 34.6 26.5 14.8 45.8 36.6 26.1
•Concerto (lin.) <0.2M <0.2% 75.4 55.7 31.1 38.2 27.7 14.9 40.1 31.3 18.2 52.5 40.8 25.7

• Sonata [49] (dec.) 16.3M 13% 76.8 62.8 40.8 40.8 33.3 22.8 39.4 33.5 22.7 63.7 57.1 45.1
•Concerto (dec.) 16.3M 13% 81.1 64.2 42.7 41.8 34.4 24.0 42.2 35.3 23.4 66.8 58.1 45.1

•MSC [46] (f.t.) 124.8M 100% 78.4 62.9 41.1 40.5 33.8 23.4 - - - 56.3 50.5 38.1
• PPT [48] (sup.) 124.8M 100% 78.9 63.5 42.1 40.8 34.1 24.0 - - - 57.5 51.2 39.7
• Sonata [49] (f.t.) 124.8M 100% 79.2 63.9 42.4 42.1 35.6 25.4 43.3 36.5 24.6 63.8 57.4 45.5
•Concerto (f.t.) 124.8M 100% 79.5 64.9 42.9 45.8 38.7 27.4 44.3 38.3 26.0 67.5 61.0 46.4

Table 4: Instance segmentation. Concerto demonstrates the strongest performance for instance
segmentation across 4 datasets with all evaluation protocols.

to reconstruct the point clouds from videos, we generate a diverse range of point cloud data. In-
corporating these lifted point clouds into the pipeline allows Concerto to learn more generalizable
representations, enhancing its ability for real-time video spatial perception. Moreover, by including
video data into training datasets, we aim to extend the scaling ability of Concerto further. In Tab. 3,
we provide results of different model sizes, where the large model variant trained with the additional
video data demonstrates significant potential for further scaling. Details of this Concerto variation
and the method of lifting are presented in the Appendix.
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cross o. c. c. s. o. c. c. s.
intra o. c. o. c. c. s. c. s.

lin. 60.7 75.6 31.6 74.7
dec. 72.0 78.6 66.0 78.3

(a) Criteria type. o.c.: online clustering crite-
ria in DINOv2 [28]; c.s.: cosine similarity.

image usage 0% 20% 50% 70% 100%

lin. 70.9 73.5 75.2 75.4 75.6
dec. 77.4 77.4 77.8 78.4 78.6

(b) Image usage. We control the image usage ratio to
present the effectiveness of joint cross-modal learning.

criteria weight 1:2 2:2 3:2

lin. 75.6 76.1 75.7
dec. 78.6 78.6 78.8

(c) Criteria weight. A suitable weight ra-
tio (cross:intra) is needed to balance intra-
and cross-modal components.

img. aug. w w/o

lin. 76.7 75.6
dec. 78.6 78.6

(d) Image augmentation.
Weak image augmentation
shows a positive impact.

vis. points ×1 ×2

lin. 75.6 75.5
dec. 78.6 78.1

(e) Visible points. Fewer
visible points, better perfor-
mance. ×1: 65536 points.

upcast level 2 3 4

lin. 75.1 75.6 75.3
dec. 78.5 78.6 78.2

(f) Upcast level. Upcast level, processed
as [49], refers to the concatenation level
of features in cross-modal learning here.

data scale 23k 40k

lin. 75.6 76.6
dec. 78.6 79.2

(g) Data scale. 23k is the de-
fault ablation setting and the
total dataset contains 40k.

model scale s b

lin. 76.6 77.3
dec. 79.2 79.5

(h) Model scale. Training on
40k. s: 39M backbone; b:
108M backbone.

Table 6: Ablation study. The default ablation setup trains on ScanNet [15] and Structured3d [60]
with 39M PTv3 [47] model as in Sonata [49]. If not specified, other default settings are in the
Appendix. For Tab. 6g and Tab. 6h, we scale the setup to match the model used in the main results.
All of our designs are enabled by default. Default settings are marked in blue .

Language ScanNet Val

Methods mIoU mAcc allAcc

MSC [46] 12.42 18.55 59.89
Sonata [49] 41.71 61.29 78.86
Concerto 44.56 64.76 80.76

Table 5: Language probing.

Language probing. Language develops from a fundamen-
tal understanding of the physical world, which motivates
many works on language alignment with 3D knowledge as
[21, 24]. In Tab. 5, we demonstrate Concerto’s ability to
formulate concepts similar to human language, paving the
way for future exploration of alignment with text-based
semantic spaces. With linear probing trained on the same
datasets as the pretraining stage, we translate Concerto’s
representations to language space by aligning LSeg [27] image encoder output to our linear probing
output. Without ground truth labels, Concerto achieves 44.56% mIoU on ScanNet zero-shot seg-
mentation. Although this lags behind the 77.3% mIoU by supervised linear probing, we expect that
further language-conditioned probing will yield comparable results, marking a significant step toward
bridging 3D spatial representations with text.

4.2 Ablation Study
In this section, we ablate intriguing properties for Concerto in Tab. 6 with the default setting in
captions, evaluating the ablation on ScanNet semantic segmentation using linear and decoder probing.
Joint cross-modal learning. In Tab. 1, we investigate the influence of joint cross-modal learning by
comparing Concerto with strong baseline models DINOv2 and Sonata. Concerto outperforms both
and surpasses their native feature concatenation. These results demonstrate that joint cross-modal
learning does more than merely merge information from different modalities; it enables the model to
learn richer emerging representations that were previously unattainable.
Criteria type. In Tab. 6a, we show that using cosine similarity as the loss function in the cross-
modal joint embedding prediction component and cross-entropy-based online clustering loss from
DINOv2 [28] in the self-distillation component facilitates joint 2D-3D self-supervised learning in
latent space. This combination reduces strict constraints and minimizes conflicts between cross-modal
and intra-modal learning, enabling a smoother joint learning process for the two objectives.
Image usage. In Tab. 6b, we further investigate the effect of multisensory interactions by varying the
input ratio of point clouds with images. The results show that even with a small ratio, such as 20%,
joint cross-modal learning is effective, leading to improvements in linear probing. When the image
usage ratio reaches 50%, the linear probing result is comparable to that with 100% image usage,
while decoder probing continues to show potential for further improvement. These results suggest
that shallow linear representations are easier to discover with a smaller proportion of images, while
deeper representations, which require decoder probing, benefit from a higher image usage ratio.
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Criteria weight. In Tab. 6c, we observe that the criteria weight ratio between cross-modal and intra-
modal components affects performance. Given the distinct objectives of intra-modal and cross-modal
learning, maintaining a balanced loss-weight ratio is essential for optimal performance. The 2:2 ratio
outperforms the others in linear probing.
Image augmentation. Data augmentations are crucial in self-supervised learning. As Sonata [49]
already explores point cloud augmentations in self-distillation, we focus on the cross-modal image
augmentations here. Initially, we follow DINOv2 strong data augmentations, which results in a
lower performance with a linear probing mIoU of 75.27%. However, when we apply less aggressive
augmentations, the performance surpasses our default setting without image augmentations, as in
Tab. 6d. The details of the image augmentations are provided in the Appendix. Since the image
encoder here is frozen, it does not benefit from data augmentations. Additionally, overly aggressive
image augmentation may confuse the point encoder with excessive distortions. Thus, careful selection
of image augmentations is essential. Currently, our model does not apply image augmentations, and
we plan to explore this in future updates.
Visible points. In Tab. 6e, we investigate the impact of visible points in the point cloud from
image views. We hypothesize that while a large amount of matched point-pixel pairs can offer more
complete information, the smaller number of pairs forces the model to predict across modalities for
the surrounding context. As the task becomes more challenging, the model is encouraged to dig
deeper into semantics, leading to better performance. In ablation, the performance is quite similar as
the point numbers we selected are still quite small, compared with the number of image pixels and
points in point clouds.
Upcast level. While Sonata [49] studies the influence of upcast levels on self-supervised learning
representations, we present the performance of different cross-modal feature upcast levels in Tab. 6f.
The model at upcast level 3 achieves the best performance, indicating that the upcast level 3 is close
to the corresponding scales of the image and point cloud. Additionally, level 3 outperforms level 4
as level 4 may retain too many low-level details that are not beneficial for joint embedding learning.
Furthermore, level 3 surpasses level 2, as the use of Sonata’s self-distillation technique at level 2
might introduce conflicts between intra-modal self-supervised learning and cross-modal joint learning
of the same upcast level, ultimately leading to negative effects.
Data scale and model weight. Additionally, following the approach of Sonata [49], we scale our
datasets from 23k to 40k, resulting in a significant improvement shown in Tab. 6g. Likewise, aligning
our model size with that of Sonata (108M) further enhances the performance, as demonstrated in
Tab. 6h. Larger datasets provide more diverse and comprehensive information, enabling the model
to learn more general patterns. As the model size increases, it becomes better equipped to capture
complex relationships. Combining both naturally leads to more generalized representation outputs.

5 Related Work
2D image self-supervised learning. Aimed at utilizing oceans of unlabeled data, image self-
supervised learning has seen significant progress [3, 12, 18, 28, 56]. These methods always focus on
learning invariant representations through transformations or augmentations of the data. One of the
most notable achievements in this field is DINOv2 [28], producing high-quality image representa-
tions. Building on the success of DINOv2, Concerto extends its reliable 2D image representations
to the cross-modal domain, incorporating both 2D image and 3D point cloud data for superior
representations in the 3D domain.
3D point self-supervised learning. While self-supervised learning has made significant progress
in the image domain, it is still in the starting stage of 3D point clouds. Building on the success
of Sonata [49], we further extend the previous works [42, 46, 50] on unimodal self-supervised
learning with scene-level data to joint 2D-3D self-supervised learning for superior representation
extracting ability. Before Sonata [49], most of the point self-supervised learning works suffer from
geometry shortcuts due to the sparse and unordered nature of point clouds. Based on its predecessor,
Concerto includes 2D images in its pipeline: leveraging point clouds to predict image features from
DINOv2 [28] by cross-modal joint embedding prediction and including 200k video-lifted point
clouds by feed-forward reconstruction methods [43] into training datasets.
Spatial understanding with joint 2D-3D data. With the rapid advancements in 2D self-supervised
learning and its remarkable performance, many methods for point cloud representation now incorpo-
rate image features into their pipelines. Approaches such as lifting projections [16, 39], differentiable
rendering [25, 54, 58], direct distillation [11, 13, 55, 62], attention-based feature fusion [59], and
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using text-aligned image encoders for open-vocabulary tasks [22, 30, 40, 44] aim to incorporating
image features in 3D learning. However, these methods primarily focus on imitating image features in
point cloud representations, often overlooking the full potential of multi-modal interaction. Recently,
Locate3D [2] seeks to develop generalizable representations beyond 2D image features but still relies
on 2D image features during inference with a complicated pipeline. In contrast, Concerto utilizes joint
2D-3D embedding prediction during training, resulting in unified and rich representations beyond
individual 2D or 3D features and their simple combination, enabling superior representations in
inference with only point clouds.

6 Conclusion and Discussion
In this work, we present Concerto, achieving SOTA performance across multiple benchmarks.
Additionally, we present the variation of Concerto for video spatial perception and the interlude of
Concerto, which explores potential future alignment with text spaces. Concerto holds great promise
for joint multi-modal self-supervised learning. Currently, it excels as a joint 2D-3D self-supervised
learning model in the 3D domain, delivering superior performance in spatial representation learning.
However, our goal extends beyond this. We discuss limitations and future works as follows:

• Native multi-modal representation learning. Our current training recipe freezes the image
encoder, treating it as a static feature extractor. A compelling future direction is to unfreeze
both the image and point cloud encoders for joint native multi-modal representation pre-training.
This approach would enable the two modalities to mutually enhance one another during learning,
fostering the development of a more robust shared representation space.

• Deep semantic grounding of language in point clouds. While our work Concerto employs linear
probing as an effective metric for evaluating feature quality, this method deliberately promotes a
shallow alignment between point clouds and language to avoid the influence of post-training
part on the evaluation performance of pretraining features. For real-world applications, this
is insufficient to just have a shallow language alignment with specific key terms. A critical
next step is to develop architectures and training objectives that move beyond simple feature
alignment towards deep semantic grounding. The goal is to enable the learned representations to
comprehend and respond to nuanced, indirect, or compositional linguistic descriptions, which
remains a significant open challenge.

• Unified self-supervised learning paradigm for diverse point cloud domains. Self-supervised
learning for point clouds has historically been fragmented, with models tailored to specific
domains (e.g., indoor, outdoor, object-level) to handle their distinct characteristics of scale
and density. We believe that a unified pre-training paradigm trained on the data from different
domains can produce more powerful and generalizable representations.By incorporating varied
data sources like lidar point clouds, video-lifted point clouds, object-centric point clouds, and
dynamic egocentric point clouds, a single self-supervised model can learn features that are robust
to domain shifts. This enhanced generalization is expected to significantly boost performance
on a wide array of downstream tasks, even those confined to a single domain.

Acknowledgments. The research presented in this paper was supported by the National Natural
Science Foundation of China (No. 62422606, 62201484).
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Figure 5: Qualitative visualization. Concerto performs well across different point cloud inputs: a
complete scene (top two rows) and an incomplete scene (bottom two rows).

Appendix

Concerto is a superior spatial representation point encoder capable of handling a wide range of scene
types, including those with varying completeness in Fig. 5, video-lifted point clouds in Fig. 6, and
the large scene in Fig. 7. Here, we further present the detailed implementation and results.

A Additional Implementation

We adopt the detailed parameters from Sonata [49] for intra-modal self-distillation and refer readers
to the original Sonata paper for an in-depth description of its implementation. In this section, we
provide a thorough explanation of the implementation for cross-modal joint embedding prediction.

A.1 Combination of Intra-Modal and Cross-Modal Learning

As Sonata, we use 4 local views, 2 masked views, and 2 global views, with the first global view serving
as the principal view. For cross-modal joint embedding prediction, we utilize the representations from
the first masked view (based on the principal view) to predict the corresponding image representations.
The cross-modal cosine similarity loss is computed at upcast level 3, while the online clustering
cross-entropy loss for intra-modal self-distillation is calculated at upcast level 2.

A.2 Correspondence Between Pixels and Points

To establish reliable 3D point to 2D pixel correspondences across camera views, we employ a two-step
approach: 3D-to-2D projection followed by depth-based visibility verification.

Let p = (X,Y, Z)T denote a 3D point in world coordinates. Each camera c is defined by intrinsic
matrix K and extrinsic matrix [R|t]. The standard pinhole camera model projects the 3D point p to
2D pixel coordinates (x, y) and a projected depth dproj:

dproj

[
x
y
1

]
= K[R|t]

XYZ
1

. (1)

To account for occlusions, we perform a visibility check comparing dproj with the depth value
dc = Dc(x, y) retrieved from camera c’s depth map Dc at the projected pixel coordinate (x, y). The
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Dataset Source Train Val Test All

ScanNet [15] real 26,428 7,354 2,877 36,659
ScanNet++ [52] real 49,315 1,583 1,208 52,106
S3DIS [1] real 10,977 3,668 0 14,645
ArkitScenes [7] real 72,481 9,786 0 82,267
HM3D [33] real 64,936 8,240 0 73,176
Structured3D [60] synthesis 65,160 6,722 6,396 78,278
RE10K [61] real 166,680 0 18,464 185,144

Concerto (ours) mixed 455,972 37,353 28,945 522,270

Table 7: Image Data Source Collection.

Dataset Source Train Val Test All

ScanNet [15] real 1,201 312 100 1,613
ScanNet++ [52] real 856 50 50 956
S3DIS [1] real 204 68 0 272
ArkitScenes [7] real 4,498 549 0 5,047
HM3D [33] real 8,117 1,030 0 9,147
Structured3D [60] synthesis 16,635 1,722 1,648 20,005
RE10K [61] real 41,670 0 4,612 46,282

Concerto (ours) mixed 74,894 3,785 6,459 85,138

Table 8: Point Cloud Data Source Collection.

point is considered visible if:
|dc − dproj| < ϵdepth, (2)

where ϵdepth is set to 0.01 in our experiments. Additionally, the correspondence is rejected if (x, y)
falls outside image bounds or Dc(x, y) contains invalid depth. This visibility check establishes a
mapping between 3D points and corresponding 2D pixels, enabling direct correspondence between
3D points and ViT patches for cross-model joint embedding prediction mechanisms. Depending on
the dataset, the depth map Dc is obtained in different ways:

• RGBD datasets. Depth maps are directly available as the depth channel of RGBD images, such
as Structured3D [60].

• Known ground truth mesh. For datasets like ScanNet [15], ScanNet++ [52], S3DIS [1],
and ARKitScenes [7], depth maps are rendered from the ground truth 3D mesh using camera
parameters.

• Pixel-aligned point clouds. For video-lifted point clouds (e.g., using VGGT [43] on
RealEstate10K [61]), per-view depth maps Di are generated alongside point clouds Pi. A
point p ∈ Pi from camera i can be visible from camera j if it passes the visibility check.

For HM3D [33], which does not provide the raw images, we leverage Habitat-Sim [31] to simulate
the scenes. For each navigatable room, we capture four images around the room with random initial
camera orientations. The angular difference between consecutive images is 90 degrees. We record the
camera parameters to compute the correspondence between points and pixels, as described previously.
The total collections of our training data are shown in Tab. 7 and Tab. 8.

A.3 Image Augmentations

We implement the same point cloud augmentations as Sonata. For image augmentations, we initially
adopt the process from DINOv2 [28], excluding geometric augmentations to simplify the alignment
between pixels and points. Specifically, we apply color jittering, random grayscale, and Gaussian blur
to the images, consistent with the settings used in DINOv2. This results in a slight drop in the mIoU
on ScanNet semantic segmentation to 75.27%, compared to using the original images. Consequently,
we continue to explore more suitable image augmentations. In the ablation study, we apply random
color jittering, with the same intensity as the point cloud augmentations, along with Gaussian blur.
This weaker augmentation improves Concerto’s performance, which is expected since the image
encoder is currently frozen. Stronger augmentations may yield better results once both the image and
point branches are unlocked for joint learning.
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Figure 6: Video perception. Concerto can be applied to single-view (top row) and multi-view
video-lifted data (bottom three rows). We visualize the PCA of one video in RE10K [61]. In the
multi-view setting, the representations from all the frames are computed together for consistency.

A.4 Experimental Setting

Software and hardware environment.

• CUDA version: 12.4
• PyTorch version: 2.4.1
• Python version: 3.10.15
• GPU: Nvidia H20 × 16 for pretraining; Nvidia H20 × 8 for evaluation.
• CPU: × 360 for pretraining; × 180 for evaluation.
• Memory: 3600GB for pretraining; 1800GB for evaluation.
• Time: 85h for pretraining of base model without video data.

Data license. We use the open-source datasets ScanNet [15], ScanNet++ [52], S3DIS [1], Struc-
tured3D [60], ARKitScenes [7], Habitat Matterport3D [33] and RealEstate10K [61] in latest versions.
S3DIS, Structured3D, ScanNet, and ScanNet++ have custom licenses. RealEstate10K is licensed
by Google LLC under a Creative Commons Attribution 4.0 International License. ARKitScenes is
licensed by Apple Inc. HM3D is licensed by Matterport.

Training details. For pretraining, we leverage all train, val, and test splits to train the self-supervised
model. For evaluation with linear probing, decoder probing, and full fine-tuning, we train on the train
split and test on the val split of ScanNet, ScanNet++, ScanNet200, and Area 5 of S3DIS. We use
AdamW as the optimizer, and cosine annealing policy as the scheduler. The learning rate is adjusted
with the encoder depth, and the max one is 0.004. The pretraining epoch is 100. For cross-modal
joint embedding prediction, we set DINOv2 image encoder input resolution 518×518.

B Additional Results

B.1 Concerto with Video-Lifted Point Clouds

We utilize the current feed-forward reconstruction model VGGT [43] to lift RealEstate10K [61]
video data to point clouds. Based on the camera poses, we heuristically select video clips with larger
camera pose transforms in comparison and abandon those with smaller camera pose transforms. With
these video clips, we can build a video dataset with more completed scenes. In Fig. 6, we utilize
Concerto to deal with single-view lifted data and multi-view lifted data. The visualizations show that
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Figure 7: Language locate. We visualize the PCA of a large house scene from HM3D [33] along
with the heatmap of zero-shot language-based object localization results. The upper-left part of the
scene shows detailed local information. Given specific words, Concerto with text-aligned linear
probing successfully locates objects in a zero-shot setting.

Model ScanNet Val ScanNet200 Val ScanNet++ Val S3DIS Area 5

img. enc. mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

DINOv2 (lin.) 77.3 86.6 91.7 37.4 49.5 83.3 45.7 60.5 86.5 73.5 81.3 90.9
SigLIP2 (lin.) 76.3 86.0 91.4 36.7 48.9 82.7 45.8 61.4 86.8 72.3 79.4 91.0
RADIO (lin.) 73.5 84.0 90.3 31.0 42.3 81.8 42.7 57.2 85.3 72.9 80.5 90.9

DINOv2 (dec.) 79.5 87.6 92.6 37.8 50.5 84.1 48.3 62.3 87.7 75.5 84.2 92.3
SigLIP2 (dec.) 78.8 87.0 92.4 37.5 47.7 83.7 46.8 58.1 87.0 73.6 79.8 91.3
RADIO (dec.) 77.9 85.7 92.3 33.9 44.6 83.4 44.9 56.5 86.2 74.8 81.2 92.2

DINOv2 (full.) 80.7 87.4 93.1 39.2 50.2 85.0 50.7 63.3 87.9 77.4 85.0 93.2
SigLIP2 (full.) 79.7 86.9 92.7 38.4 49.9 83.9 50.0 62.0 88.2 75.0 80.2 92.5
RADIO (full.) 79.6 86.6 92.7 36.1 46.9 83.8 48.4 60.6 88.2 75.1 80.5 92.8

Table 9: Segmentic segmentation of Concerto with different image encoders. Concerto with
DINOv2 based on self-distillation has the best performance in general.

Concerto adapts well to these two situations, suggesting that Concerto cannot only be applied to the
offline video reconstruction but also to the single-view forward situation.

B.2 Concerto with Language Probing

We leverage a simple linear layer to translate the representations from Concerto to CLIP’s text space.
During training, we force the linear probing output to align with the LSeg [27] image encoder’s
output, which does not need the ground truth labels to supervise. In the aligning process, we do not
use masks and crop augmentations. The visualization results are shown in Fig. 7.

B.3 Results with Different 2D Encoder

In this section, we compare the performance of different strong image encoders: DINOv2 [28],
SigLIPv2 [41], and RADIO [34]. We adopt DINOv2 L version with a resolution of 518×518,
SigLIPv2 So400m version with a patch size of 16 and resolution 512×512, and RADIOv2.5 L
version with a resolution of 768×768. For each model, we pretrain a variant of Concerto on 40k data,
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Data Efficiency Params Limited Scenes (Pct.) Limited Annotation (Pts.)

Methods Learn. Pct. 1% 5% 10% 20% 100% 20 50 100 200 Full

Concerto (lin.) 0.02M 0.02% 48.2 69.1 73.6 75.0 77.3 73.9 75.2 76.2 76.3 77.3
Concerto (dec.) 16.3M 13.1% 44.6 67.9 73.7 74.6 79.5 72.6 74.6 76.7 77.6 79.5
Concerto (full.) 124.8M 100.0% 46.5 69.0 75.3 76.1 80.7 73.3 76.7 77.6 78.4 80.7
Concerto (lora) 0.3M 0.2% 48.4 70.2 74.9 76.8 79.8 75.1 77.2 78.3 78.7 79.8

Table 10: Parameter Efficiency with LoRA. Concerto with LoRA significantly improves the
performance with a minimal number of learnable parameters, highlighting the reliability of pretrained
Concerto representations and the effectiveness of LoRA fine-tuning.

LoRA Params ScanNet Val ScanNet200 Val ScanNet++ Val S3DIS Area 5

Methods Learn. Pct. mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

Concerto (lin.) <0.2M <0.2% 77.3 86.6 91.7 37.4 49.5 83.3 45.6 60.5 86.5 73.5 81.3 90.9
Concerto (dec.) 16.3M 13.1% 79.5 87.6 92.6 37.8 50.5 84.1 48.3 62.3 87.7 75.5 84.2 92.3
Concerto (full.) 124.8M 100.0% 80.7 87.4 93.1 39.2 50.2 85.0 50.7 63.3 87.9 77.4 85.0 93.2
Concerto (lora) <0.5M <0.5% 79.8 87.9 92.7 38.4 51.9 84.1 47.3 60.8 87.7 75.5 81.4 92.6

Table 11: Semantic segmentation with LoRA. We compare the LoRA fine-tuning method on
Concerto across four semantic segmentation benchmarks, demonstrating LoRA’s remarkable capacity
in general and the reliability of Concerto’s original pretrained representations.

excluding video-lifted data. We evaluate these models across four datasets on semantic segmentation,
as shown in Tab. 9. The results reveal that the Concerto model based on DINOv2, using self-
distillation, achieves the highest mIoU in general. This suggests that in our joint self-supervised
learning framework, the optimal synergy is achieved when representations from different domains
are derived through intra-modal self-distillation. RADIO, which incorporates distilled information
from multiple models, may damage the original self-distillation features from DINOv2, thus leading
to a decrease in performance.

B.4 Results with LoRA Finetuning

From the main results, we observe that linear probing outperforms full-finetuning in extreme data-
scarce scenarios. This suggests that training methods may benefit from shifting toward LoRA-based
fine-tuning. In this section, we present the results of LoRA fine-tuning. Specifically, we adapt LoRA
to the point encoder and evaluate it with linear probing. We set the LoRA rank to 8, the LoRA alpha
to 16, and the dropout rate to 0.1.

The results of ScanNet Data Efficiency are shown in Tab. 10. These results demonstrate that the
LoRA-based method outperforms both linear probing and full fine-tuning in terms of mIoU across
most scenarios, despite a small increase in learnable parameters compared to the original linear
probing. This suggests that LoRA is an effective fine-tuning approach, particularly when data is
limited. Notably, linear probing with LoRA achieves performance comparable to decoder probing in
the full evaluation and only a 0.9% performance drop compared to full fine-tuning on mIoU, while
offering significant improvements in training efficiency.

We also evaluate the LoRA fine-tuning on Concerto across four benchmarks, as shown in Tab. 11.
The results demonstrate that LoRA fine-tuning shows performance comparable to decoder probing,
even with relatively small learnable parameters. Overall, the LoRA fine-tuning demonstrates strong
efficiency and performance across various benchmarks, highlighting two key insights: Concerto
already yields reliable and generalizable representations, and leveraging pretrained representations
combined with LoRA fine-tuning is both efficient and effective for further task adaptation.
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