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Hallucinations in Large Vision-Language Models (LVLMs) remain a persistent challenge, often stemming
from inadequate integration of visual information during multimodal reasoning. A key cause is the model’s
over-reliance on textual priors and underutilization of visual cues, leading to outputs that are linguistically
fluent but visually inaccurate. For example, given an image of an empty kitchen countertop, an LVLM might
hallucinate a “bowl of fruit” or “cup of coffee,” relying on language associations rather than visual evidence.
Most LVLMs incorporate visual features by appending them to the input stream of a pre-trained LLM and
training on large-scale vision-language datasets. Our systematic analysis reveals that this strategy often leads
to over-dependence on textual information due to the inherent bias of LLMs towards language-dominant
representations. This imbalance skews attention towards the text over visual content, weakening the model’s
ability to ground outputs in visual inputs. To address this, we propose a simple yet effective visual feature
incorporation method that encourages the model to learn visually-informed textual embeddings distinct from
those of the base LLM and promotes a more balanced attention distribution. Experimental results across
multiple hallucination benchmarks demonstrate that our method significantly reduces hallucinations and
fosters more balanced multimodal reasoning. Notably, our approach achieves substantial gains, including
+9.33% on MMVP-MLLM, +2.99% on POPE-AOKVQA, up to +3.4% on Merlin, and +3% on the hard-data
split of HallusionBench.

1. Introduction
The advent of LLMs has transformed NLP, enabling tasks like machine translation, dialogue, and content
generation with unprecedented accuracy and fluency. Building on this, Large Vision-LanguageModels (LVLMs)
(Lin et al., 2023, Zhang et al., 2023a, Maaz et al., 2024) integrate visual and linguistic understanding
in a unified framework, bridging text and visual modalities. This synergy has advanced tasks such as
captioning (Chen et al., 2022), question-answering (Li et al., 2023a), multimodal retrieval (Lin et al., 2024),
etc. As LVLMs advance, their adoption in domains such as healthcare, autonomous driving, and education is
accelerating, expanding the role of AI in real-world multimodal applications.

Despite this progress, LVLMs remain prone to hallucinations—outputs that are fluent but not grounded in the
visual input. These errors, which include fabricating or misinterpreting visual content, undermine reliability
and hinder deployment in safety-critical settings. Fig. 1 illustrates failure cases from Video-LLaVA (Lin
et al., 2023), a widely adopted LVLM. In one case, the model captions a scene as “moving it towards a
person,” despite the absence of both the person and action in the video—highlighting both object and
action hallucination. Beyond these, LVLMs hallucinations span a wide range. Attribute hallucination involve
assigning incorrect visual properties, such as describing “a red car” when the car is actually blue, or denying
visible objects (e.g., “there are no chickens” despite their presence). Relation hallucination fabricate spatial or
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Object Hallucination:
Q: what is a man walking down?
(GT) A: Road/trail
(Video-LLava) A: A man is walking 
down a path. 
(LLM only) A: A man is walking 
down the street.

Action Hallucination:
Q: what is a man doing ?
(GT) A: Walking, Sitting
(Video-LLava) A: A man is 
walking down a path. 
(LLM only) A: A man is 
walking down the street.

Attribute Hallucination:
Q: According to the table, is the 
number of gold medals of Norway 9 
in winter Olympics in 2022?
(GT) A: Yes
(Video-LLava) A: No
(LLM only) A: No

Relation Hallucination:
Q: According to the image, is New 
York the only U.S. state that shares 
a border with Lake Huron?
(GT) A: Yes
(Video-LLava) A: No, New York ..
(LLM only) A: No, ..

Figure 1: Hallucinations in Video-LLaVA (Lin et al., 2023).
contextual links, such as claiming “the person is jumping over the fence” when the person is merely standing
beside it. In video-based settings, hallucinations may also include fabricated temporal dynamics, such as
asserting “the person enters the room” when the individual never appears in the frame.

We hypothesize that a fundamental source of hallucinations in LVLMs arises from the prevailing architectural
paradigm in which the visual information is appended as embeddings (typically extracted using frozen
pre-trained visual encoders) to the input sequence of a pre-trained LLM (Fig. 2, top). This fused input is then
pass to the model and fine-tune on large-scale vision-language datasets, such as image/video captioning,
and VQA (Lin et al., 2023, He et al., 2024, Maaz et al., 2024), etc. While this approach offers modularity,
data efficiency, and leverages the strong language generation capabilities of LLMs, it introduces a structural
asymmetry: the LLM backbone, trained solely on text, remains inherently biased toward language-driven
reasoning (An et al., 2025, Arif et al., 2025). As a result, during fine-tuning, the model may tend to fall back
to text priors, under-utilizing the visual embeddings and treating them as secondary in the reasoning process.
This modality imbalance may lead to a systematic misalignment between visual evidence and generated text,
manifesting during inference as hallucinations: outputs that are linguistically coherent and semantically
plausible, yet factually incorrect or unsupported by the visual input.

Motivated by this, we systematically investigate modality imbalance in LVLMs as a potential source of
hallucinations, with a focus on the dominant practice of appending visual embeddings to the input textual
tokens of pre-trained LLMs (Lin et al., 2023, He et al., 2024, Maaz et al., 2024). We use Video-LLaVA (Lin
et al., 2023) as baseline due to its strong performance, modular design, and community adoption, making it
well-suited for controlled analysis and evaluation. Our analysis reveals that the prevailing approach of simply
appending visual embeddings to the textual input sequence causes the model to over-rely on language while
under-utilizing visual information, thereby exacerbating hallucinations. This arises because the backbone
LLM, optimized for text, disproportionately emphasizes textual tokens during self-attention operations within
the transformer layers.

To address this modality imbalance, we propose a method that integrates visual information directly into
text embeddings at the token level, enabling more balanced attention and cross-modal representations that
better ground generation in visual input. By embedding visual semantics within the language representation,
our method fosters balanced cross-modal reasoning, and reduces hallucinations. Extensive evaluation across
multiple hallucination benchmarks demonstrates consistent and statistically significant gains, highlighting
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LLM
Visual Embedding

Textual Embedding
Baseline LVLMs ǁ

LLM
Visual Embedding

Textual Embedding

LVLM trained 
with VisAlign

ǁ

Linear Layerǁ ǁ ǁ

∑

Figure 2: Top: Architecture of typical LVLMs like Video-LLaVA, which fuse language and vision embeddings by simple
concatenation. Bottom: Our modified architecture with a concatenation block that appends the averaged vision
embedding to each token embedding, followed by a projection layer. This encourages the model to learn visually
informed textual embeddings and better attend to visual input during training.

the effectiveness and generalizability of our method.

2. Related Works
Large Vision-Language Models (LVLMs) extend pre-trained LLMs to handle visual inputs, typically by
appending visual embeddings—extracted from frozen image or video encoders—to the language token
sequence. This token-level fusion strategy enables architectural modularity and reusability of LLMs without
major modifications. Notable models following this approach include LLaVA (Liu et al., 2024b), MiniGPT-
4 (Zhu et al., 2023b), Video-LLaVA (Lin et al., 2023), Video-ChatGPT (Maaz et al., 2023), Bunny (He et al.,
2024), and Video-LLaMA (Zhang et al., 2023a). Among these, Video-LLaVA has emerged as a foundational
model due to its strong benchmark performance, open-source nature, and straightforward temporal extension
via frame-wise token concatenation (Tang et al., 2025). Tang et al. (Tang et al., 2025) further identify
Video-LLaVA as a key reference model that underpins many derivatives, including Video-ChatGPT (chat
applications), Bunny (efficiency), and Video-LLaMA (fine-grained fusion).

Models like Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023a) use complex cross-attention
to integrate modalities dynamically across transformer layers. Although more flexible, they incur higher
computational costs and less modularity. Empirical results (Liu et al., 2024b) show simpler token-appending
strategies often match or outperform these methods in accuracy and efficiency. For its simplicity, extensibility,
and strong performance, we adopt Video-LLaVA (Lin et al., 2023) as our base model to investigate visual
feature integration limitations, focusing on attention distribution, modality alignment, and hallucination.

Hallucination Detection and Mitigation in LVLMs is actively studied through a range of benchmarks
designed to evaluate diverse hallucination types. POPE-AOKVQA (Li et al., 2023b) and NOPE (Lovenia et al.,
2023) focus on object-level hallucinations, while MERLIN (Jing et al., 2023) examines factual consistency via
atomic fact decomposition. MMVP-MLLM (Tong et al., 2024) and HallusionBench (Guan et al., 2024) probe
model behavior under minimal semantic variation and cross-modal conflicts. Mementos (Wang et al., 2024a)
targets temporal hallucinations in sequential visual reasoning. AMBER (Wang et al., 2023a) introduces a
unified benchmark for evaluating both discriminative and generative hallucinations. Together, these datasets
reveal a broad spectrum of hallucination phenomena—including object, action, attribute, relational, and
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temporal inconsistencies—highlighting the complexity of achieving reliable visual grounding in LVLMs.

Several approaches have recently been proposed to mitigate hallucinations in LVLMs. M-HalDetect (Gunjal
et al., 2023) introduces a dataset of hallucinated captions for training classifiers, while HaELM (Wang et al.,
2023b) proposes a fine-tuning framework to distinguish hallucinated from faithful outputs. Reinforcement
learning methods such as GAVIE (Liu et al., 2023) penalize ungrounded generations, and ALOHa (Petryk et al.,
2023) leverages LLMs to detect hallucinated objects beyond fixed vocabularies. RLHF-based techniques (Sun
et al., 2023) further enhance multimodal alignment. CLOCK (Biten et al., 2022) uses attention calibration
during training. Inference-time strategies include visual-grounding-enhanced decoding via image descrip-
tions (Ghosh et al., 2024), Instruction Contrastive Decoding (ICD) (Wang et al., 2024b), Self-Introspective
Decoding (SID) (Huo et al., 2024), which verifies partial generations, and Visual Contrastive Decoding
(VCD) (Leng et al., 2024), which re-ranks outputs to promote visual consistency. Together, these methods
represent the current state of the art in hallucination mitigation.

Unlike prior approaches that rely on post-hoc corrections, inference-time heuristics, or hallucination-
supervised fine-tuning, our method addresses hallucination proactively at the input representation level.
By enriching textual embeddings with visual information, we encourage more balanced cross-modal atten-
tion and more effective utilization of visual cues—directly targeting the root cause of modality imbalance.
This results in a more integrated, principled, and generalizable solution. Furthermore, our method not
only performs well independently but also enhances existing techniques, as demonstrated in Appendix A,
underscoring its broad applicability and complementary strengths.

3. Background
As noted above, we adopt the widely used Video-LLaVA as our baseline due to its pivotal role in advancing
the field. Its canonical status and strong performance make it an ideal foundation for investigating modality
imbalance, attention dynamics, and hallucination behaviors in LVLMs.This section formally outlines the
architecture and training pipeline of Video-LLaVA (refer Figure 2 for an overview). It consists of the following
components:

A frozen visual encoder to extract embeddings from the video (or image), the Video-LLaVA uses the
pre-trained LanguageBind (Zhu et al., 2023a).

A projection layer that maps the visual embeddings into the textual (base LLM’s) embedding space. The
vision-language alignment is carried out via this projection layer. Formally, let V ∈ R

Nv×dv denote the visual
embeddings, where Nv is the number of visual tokens and dv is the visual embedding dimension. Output
from the learnable projection layer W p ∈ R

dv×dt is denoted as:

Vproj = VW p, where Vproj ∈ R
Nv×dt (1)

where dt is the LLM embedding dimension.

A backbone LLM: as mentioned above, LVLMs typically extend upon a pre-trained LLM. Video-LLaVA uses
the pre-trained Vicuna-7b (Zheng et al., 2023).

The training involves the following two stages:

Pretraining: The visual encoder is frozen, and only the projection layer W p will be trained. This stage aims
to learn the visual-language alignment such that visual embeddings are interpretable by the base LLM.

Finetuning: In this stage, the entire pipeline including the LLM is trained end-to-end. The goal is to adapt
the LLM to more effectively integrate and reason over visual embeddings alongside textual inputs, enabling
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Attention Layer 1       Attention Layer 2       Attention Layer 3      Attention Layer 4        Attention Layer 5       Attention Layer 6

Video-LLava Attention-Score Distribution across first 6 Layers.

Video-LLava + VisAlign Attention-Score Distribution across first 6 Layers.

Figure 3: Attention score distributions across the first six attention layers of the baseline Video-LLaVA model (top
row) and the VisAlign-enhanced model (bottom row). Video-LLaVA concatenates tokens in a fixed order: 35 initial
text tokens, followed by 256 visual embeddings, and then the remaining text tokens. In each map, the x-axis denotes
attended tokens (keys), and the y-axis denotes attending tokens (queries). Color intensity reflects attention weight:
blue indicates low attention, red/white indicates high attention, and dark (near-black) regions indicate masked or
negligible attention due to causal masking in autoregressive LVLMs.

visually-grounded language generation (e.g., captions or answers in VQA tasks).

4. Evaluating the Attention Score Distribution
Analyzing the attention score distribution across transformer layers provides insight into how information
flows from lower to higher layers in LLMs. These scores reveal which tokens most influence the model’s
output and offer insight into its learning dynamics (Zhang et al., 2023b). Extending this analysis to LVLMs,
we visualize the attention score distributions over both textual and visual tokens to better understand
cross-modal interactions.

Figure 3 shows attention score distributions across multiple transformer layers in Video-LLaVA (Lin et al.,
2023). In each heatmap, the horizontal axis represents Key tokens (tokens being attended to), and the
vertical axis represents Query tokens (tokens performing attention). Color intensity encodes attention
strength: cooler tones (e.g., blue) indicate lower scores, while warmer tones (e.g., red) and white indicate
stronger attention. Nearly black regions show minimal or zero attention, often due to causal masking—a
mechanism in auto-regressive LVLMs that prevents tokens from attending to future positions during decoding.
This visualization qualitatively reveals how attention is distributed between visual and textual tokens across
the network. Asymmetric or modality-skewed patterns highlight if the model overly favors one modality
(typically text) at the expense of the other modality (visual), which can explain hallucination and grounding
failures in multimodal tasks.

Figure 3 reveals a pronounced imbalance in how Video-LLaVA distributes attention between textual and
visual tokens. In Layer 1 (top row, first plot), attention is heavily concentrated on the initial textual tokens
(upper-left red region), sharply declines over the visual tokens, and rises again for the trailing textual
tokens—a pattern consistent across layers. As defined in Eq. (1), the input sequence X follows a fixed order:
initial textual tokens, followed by visual tokens, and then remaining textual tokens. This results in the model
disproportionately focusing on textual tokens at both ends while under-attending to the visual tokens in
between.
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This asymmetric attention distribution reflects a modality bias rooted in the pre-trained base LLM, which was
trained exclusively on text. During fine-tuning, the model relies heavily on linguistic priors and insufficiently
leverages the visual embeddings provided by the frozen image or video encoder. This imbalance restricts
the effective propagation and integration of visual signals across transformer layers, undermining robust
visual grounding. Consequently, the model is prone to generate hallucinations—outputs that are fluent and
semantically coherent but factually misaligned or unsupported by the visual input.

5. Improving Attention Score Distribution by Refining Textual Embeddings
We propose a simple yet principled approach, VisAlign, aimed at improving the attention score distribution
across the visual and textual modalities. The underlying hypothesis is that encouraging a more balanced
attention pattern, particularly by increasing attention to visual tokens, can help the model to better utilize
visual information and reduce hallucinations caused by over-reliance on textual priors. VisAlign operates
by refining textual embeddings through the integration of visual context prior to their input into the LLM.
This alignment enables the model to extract and encode meaningful visual signals that might otherwise
be underutilized due to the inherent linguistic bias of pre-trained LLMs. By fostering a more balanced and
synergistic interaction between vision and language, VisAlign improves the utilization of visual information,
without requiring architectural changes or external supervision.

As illustrated in Figure 2, VisAlign first applies average pooling on the projected visual embeddings Vproj ∈

R
Nv×dt , resulting in the visual embedding vector V̂ ∈ R

1×dt :

V̂ =
1

Nv

m=(Nv−1)
∑
m=0

Vproj[m] (2)

Next, we fuse V̂ with the text embeddings T1∶Nt ∈ R
Nt×dt via concatenation along the dt dimension, yielding

the fused embeddings TV :

TV = [ T ∥ V̂ ⊗ 1Nt ] ∈ R
Nt×2dt (3)

Then, we apply a linear projection layer Wd ∈ R
2dt×dt to map the fused representations TV back to the

original LLM embedding dimension dt, producing the visually-grounded text token sequence, T̂ = TV Wd

(∈ R
Nt×dt). Unlike the original textual tokens in base Video-LLaVA—which are derived solely from language

embeddings—each token in T̂ encodes both visual and textual information. This enriched representation
supports more effective cross-modal reasoning and visual grounding in downstream tasks.

Finally, we append T̂ to V̂ following the original concatenation strategy in Video-LLaVA (Eq. (1)):

X̂ = [ T̂1∶k ∥ V̂ ∥ T̂k+1∶Nt ];where X̂ ∈ R
(Nt+Nv)×dt (4)

The token sequence X̂ is then fed into the base LLM. It consists of visually grounded textual embeddings,
followed by visual embeddings, and ends with the remaining grounded textual tokens.

Training Stages: We use the same datasets and training strategy as used in the baseline VideoLLaVA (Lin
et al., 2023). In the pretraining stage, we train both the vision-language projection layer and the linear layer,
while keeping the LLM frozen (refer to Figure 2 for an overview of the model). Whereas in the finetuning
stage, we train the full model end-to-end, including the LLM, to allow for complete adaptation to the fused
representations.
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5.1. Attention score distribution with VisAlign
Figure 3 (bottom row) shows the attention distribution of Video-LLaVA trained with the VisAlign method. As
illustrated, attention with VisAlign is more balanced and structured, spanning both visual and textual tokens
throughout the sequence. Notably, the vertical attention bands are sharper and more frequent, indicating
that the model consistently attends to specific visual regions or tokens that serve as semantic anchors across
layers. Additionally, the smoother and more continuous diagonal gradients indicate that tokens attend not
only to their local context but also capture long-range dependencies, reflecting a balanced and context-aware
attention mechanism. In contrast, the top row (baseline Video-LLaVA) shows less coherent, more fragmented
attention patterns. High attention is concentrated at the sequence boundaries, corresponding to textual
token positions (Eq. (1)), revealing a strong bias toward language inputs. The lack of consistent vertical
stripes further suggests limited focus on key visual elements, weakening the model’s ability to maintain
cross-modal grounding over time. Overall, attention in the baseline appears noisy and scattered across layers,
indicating difficulty in forming stable associations between visual content and language queries.

These differences highlight VisAlign’s effectiveness in improving the model’s ability to integrate visual
and textual modalities. By promoting more balanced attention, VisAlign improves focus on critical visual
cues often overlooked by baseline Video-LLaVA, strengthening temporal and spatial coherence across the
transformer layers and boosting overall visual information use.

6. Experiments and Results
We demonstrated that VisAlign improves attention distribution in Video-LLaVA. In this section, we evaluate
its effectiveness in reducing hallucinations by comparing the original model with the VisAlign-augmented
version across several benchmarks.

MMVP-MLLM (Tong et al., 2024) benchmark features carefully curated image pairs with highly similar
CLIP embeddings, minimizing semantic divergence and emphasizing subtle visual distinctions. Each pair is
accompanied by two binary-choice questions targeting fine-grained visual understanding. A model receives
credit only if it answers both correctly, enforcing a strict criterion that rewards accurate visual grounding
and penalizes reliance on language priors. This makes MMVP-MLLM particularly effective for evaluating
hallucinations, as it compels models to rely on actual visual evidence rather than linguistic shortcuts or
memorized associations.

The results in Table 1 show that Video-LLaVA enhanced with VisAlign achieves a substantial +9.33%
improvement over the baseline. Since MMVP-MLLM is specifically designed to probe bias and hallucination in
LVLMs by enforcing fine-grained visual discrimination under minimal semantic variance, this gain is especially
significant. It demonstrates that VisAlign markedly strengthens the model’s grounding in visual evidence
rather than relying on linguistic priors, effectively reducing hallucinations and improving factual consistency.
A qualitative comparison is presented in Figure 4. In the first example, the model must distinguish between
two flame images—one round and the other elongated. The baseline Video-LLaVA incorrectly classifies both
as “round,” indicating over-reliance on memorized language patterns. In contrast, the VisAlign-enhanced
model correctly differentiates the shapes, demonstrating stronger visual grounding. Similar improvements
appear in other examples, underscoring VisAlign’s effectiveness in reducing hallucinations and promoting
accurate, cross-modal reasoning.

POPE (Li et al., 2023b) evaluates hallucinations through yes/no questions about object presence in images.
“Yes” questions correspond to ground-truth objects, while “No” questions are adversarially crafted from the
top-k most frequent object categories absent from the image. This setup exposes the model’s reliance on
language priors by testing its ability to reject visually unsupported but common objects. Following prior
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MMVP-MLLM POPE A-OKVQA
Acc Acc P R F1

Video-LLaVA 14 54.1 52.14 99.6 68.45
+ VisAlign 23.33 57.09 53.9 98.33 69.63

Table 1: Results on POPE A-OKVQA (Li et al., 2023b) & MMVP-MLLM (Tong et al., 2024). Acc: Accuracy, P:Precision,
R:Recall, F1: F1 score.

Is the flame of the match more round or 
thin? (a) Round (b) Thin

(a) (b)

The flame of the 
match is more round.

The flame of the 
match is more round.

The flame of the 
match is thin.

The flame of the 
match is more round.

Can you see the key \"Z\" in the image? (a) 
Yes (b) No

(a) (b)

Yes, the key \"Z\" is 
visible in the image.

Yes, the key \"Z\" is 
visible in the image.

No (b)

Yes, the key \"Z\" is 
visible in the image.

Has the peacock opened its tail? (a) Yes 
(b) No

(a) (b)

Yes

Yes No 

Yes

Based on the image, is the following 
statement correct: We cannot see the window 
on the school bus? (a) Correct (b) Incorrect

(a) (b)

(b) Incorrect

The window on the 
school bus is covered 
by the stop sign.

B

(b) Incorrect

Is the wind blowing the flag? (a) Yes (b) No

(a) Yes

Yes (b) No (b)

Yes

(a) (b)

Is the duck floating? (a) Yes (b) No

Yes

Yes No

Yes

(a) (b)

Is the ground wet? (a) Yes (b) No

No

Yes No

No

(a) (b)

Are the ears of the dog erect or drooping? 
(a) Erect (b) Drooping

The dog's ears are 
drooping in the image.

The dog's ears are 
erect, not drooping...

Droop

The dog's ears are 
drooping in the image.

(a) (b)

Figure 4: Qualitative results from the MMVP-MLLM Benchmark: Below each image, the baseline model’s response is
shown first, followed by the response from the model trained with VisAlign.

work (Villa et al., 2025), we focus on the most challenging setting: Adversarial SEEM from A-OKVQA,
which applies SEEM-based object detection to A-OKVQA images. This subset probes whether models falsely
affirm the presence of common yet incorrect objects, revealing object-level hallucinations driven by language
bias. POPE thus offers a fine-grained, targeted measure of visual grounding, serving as a rigorous and
complementary benchmark to evaluate VisAlign’s effectiveness in reducing hallucinations.

Table 1 presents quantitative results on the POPE benchmark, where VisAlign consistently surpasses the
baseline across key metrics, achieving a 2.99% increase in accuracy, a 1.76% boost in precision, and a 1.18%
gain in F1-score. The notable rise in precision indicates a significant reduction in false positives—hallucinated
objects—while the improved F1-score reflects a more robust balance between precision and recall. These
provide strong evidence that VisAlign effectively curtails predictions of frequent yet visually unsupported
objects, thereby substantially enhancing object-level visual grounding. Supporting qualitative results in Fig. 5
further reinforce VisAlign’s reliability in avoiding erroneous affirmations of absent objects, underscoring its
critical role in advancing cross-modal integration and reducing hallucinations.

MERLIN Villa et al. (2023) evaluates factual consistency and visual grounding in LVLMs through fine-grained
object existence verification. It employs a curated set of original and synthetically edited images to assess
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Curated Images
Pos-Orig Pos-Edited Neg-Orig Neg-Edited

Video-LLava 30.9 16.7 71.5 79.6
VisAlign 34.3 20.3 72.7 83.0

Random Images
Pos-Orig Pos-Edited Neg-Orig Neg-Edited

Video-LLava 48.2 33.3 59.5 67.9
VisAlign 48.6 36.7 60.1 71.3

Table 2: Results (in %) on the Merlin benchamark Villa et al. (2023)). “Pos":Positive, “Neg":Negative.
Object Action

Method Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Robotics Domain
Video-LLaVA 8.27 16.55 12.40 13.46 5.53 6.99 11.30 8.40
+VisAlign 9.40 19.20 13.61 15.16 6.50 9.60 10.76 9.45

Daily Life Domain
Video-LLaVA 22.05 38.30 31.90 33.55 13.50 31.70 18.66 22.40
+VisAlign 22.18 38.31 32.31 33.70 12.31 32.10 16.44 20.70

Comics Domain
Video-LLaVA 11.12 21.00 19.00 18.86 4.48 11.28 6.58 8.08
+VisAlign 12.00 21.00 17.80 18.41 4.00 13.33 5.36 7.10

Table 3: Results on Mementos (Wang et al., 2024a) across object and action hallucinations in three domains.
whether models can accurately detect the presence or absence of objects. Our evaluation specifically targets
a subset of MERLIN where an entire object category, limited to a single instance in the original image, has
been removed in the edited version.

Table 2 presents quantitative results for both positive (object present) and negative (object removed) cases,
evaluated under two distinct image sampling strategies. Across all configurations, VisAlign consistently
outperforms the baseline, achieving significant improvements in accurately grounding object presence and
absence. These results demonstrate VisAlign’s superior capability to mitigate hallucinations by enhancing
the model’s sensitivity to subtle visual cues, thereby substantially improving visual fidelity and robustness in
fine-grained, object-centric reasoning tasks.

Mementos (Wang et al., 2024a) evaluates sequential image reasoning in LVLMs across three domains:
Robotics, Comics, and Daily Life. It rigorously test object and action hallucinations within dynamic visual
contexts, emphasizing temporal coherence and object-behavior relationships. This makesMementos especially
valuable for assessing a multimodal model’s ability to detect hallucinations while accurately understanding
complex, evolving visual narratives.

Table 3 shows significant improvements in the Robotics domain for both object hallucination (+1.13%
accuracy) and action hallucination (+0.97% accuracy). These gains stem from the structured, goal-driven

Visual Dependent Visual Supplement
Method Figure Ilusion Math OCR Video Chart Map OCR Table Average

Hard Data Split
Video-LLaVA 29.27 54.93 35.29 41.30 36.84 24.56 25.00 18.52 28.79 32.72
Video-LLaVA + VisAlign 34.15 49.30 37.25 45.65 36.84 21.05 28.12 33.33 34.85 35.61

Easy Data Split
Video-LLava 64.10 40.28 27.78 75.61 15.94 35.11 46.88 53.70 36.36 43.97
Video-LLava + VisAlign 53.85 36.11 37.04 53.66 36.23 25.95 48.44 50.00 28.57 41.1

Table 4: Category-wise results on the HallusionBench benchmark(Guan et al., 2024).
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(a)

Object
Hallucination

(1). Is there a dog in 
the picture?

Yes, there are two 
dogs in the picture.

Yes, there is a dog in 
the image.

(b)

Action
Hallucination

(1) Write a description for the given image sequence in a single paragraph, what is happening in this episode?

The image sequence shows a person using a robotic arm to pick up a cell phone from a table…., 

including holding the phone in its grasp, moving it towards the person, and placing it back on the 

table. …

In the image, there is a robotic arm with a gripper end, which is picking up a cell phone from a table. 

… The image is a sequence of the robotic arm picking up the cell phone from the table.

(c)

Attribute
Hallucination

(1). Based on the 
map, did the 
Republican Party 
win Texas in the 
2020 elections?

No

Yes

(d)

Relation
Hallucination

(2). According to the 
table, is the number 
of gold medals of 
Norway 9 in winter 
Olympics in 2022?

No

Yes

(1). According to the image, is New York the only 
U.S. state that shares a border with Lake Huron?

No, … In addition to New York, … Michigan and 
Wisconsin also share a border with Lake Huron.

Yes, according to the image, New York is the only 
US state …

(2). Is there a dog in 
the picture?

Yes, … it is parked 
near the giraffes.

No, … The image 
features two giraffes 

standing next to a tree 
….

(3). Is there a tree in 
the image?

Yes, there is a tree in 
the image.

No, … a person 
holding a camera 

and taking a picture 
of cupcakes. 

(2). In the image, there is one daisy that 
is under the shadow of a taller daisy.  (a) 
Correct (b) Incorrect 

(a) Correct

(b)

Samples taken from (1) HallusionBench (2) MMVP

Samples taken from (1) HallusionBench (2) HallusionBench

Sample taken from (1) Mementos

Samples taken from (1) HallusionBench (2) POPE (3) POPE

Figure 5: Qualitative examples from POPE A-OKVQA, HallusionBench, MMVP, andMementos benchmarks illustrating
various hallucination types. Input prompts are shown in orange, baseline Video-LLaVA outputs in yellow, and VisAlign-
enhanced outputs in green. VisAlign consistently improves performance across object, action, attribute, and relation
hallucinations.
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nature of robotic sequences, where predictable temporal patterns and clear visual cues enable VisAlign to
maintain coherent attention over time and better align visual tokens with text, enhancing temporal reasoning
of object states and behaviors. In contrast, improvements in the Comics and Daily Life domains are more
modest, likely due to their greater visual and semantic complexity. Comics often use stylized, symbolic
imagery and abstract narratives that disrupt typical visual-linguistic links, while Daily Life scenes involve high
variability, subtle object transitions, and complex human actions that hinder consistent temporal alignment.
In these unstructured contexts, VisAlign’s attention calibration is limited by noisier, less reliable visual inputs.

HallusionBench (Guan et al., 2024) is a diagnostic benchmark assessing how parametric memory affects
hallucinations in LVLMs. It categorizes questions into Visual-Dependent (VD), requiring visual input, and
Visual-Supplement (VS), answerable using world knowledge or training data. VS questions evaluate the
model’s ability to resolve conflicts between visual input and parametric memory. The benchmark includes
easy and hard splits, with the hard subset featuring human-edited images designed to create modality
conflicts.

Table 4 shows an average improvement of about 3% on the challenging hard subset. Significant gains are
seen in Visual-Dependent (VD) tasks, with improvements of 4.88%, 1.96%, and 4.35% in the “Figure,”
“Math,” and “OCR” categories, respectively. Even larger gains occur in Visual-Supplement (VS) tasks, with
3.12%, 14.81%, and 6.06% improvements in “Map,” “OCR,” and “Table.” These results are particularly
notable because the hard subset contains human-edited images designed to conflict with common knowledge,
forcing the model to rely on visual input rather than memorized facts. The gains indicate that VisAlign
substantially improves the model’s ability to ground predictions in visual evidence, reducing over-reliance
on language priors. For example, Figure 5 (d)(1) shows a manipulated map where New York is falsely
depicted bordering Lake Huron; while baseline Video-LLaVA hallucinates based on memorized geography,
Video-LLaVA+VisAlign correctly interprets the altered visual context. Similarly, in (c)(2), a falsified medal
count for Norway is accurately detected only by the VisAlign-enhanced model. These examples highlight
VisAlign’s effectiveness in enhancing visual grounding and mitigating hallucinations by improving sensitivity
to subtle visual inconsistencies.

Summary: consistent improvements across all benchmarks demonstrate that refining attention score dis-
tributions effectively reduces hallucinations, enabling predictions grounded in visual evidence rather than
memorized associations. Additional results in Appendix A show VisAlign’s complementary gains when
combined with state-of-the-art methods like VCD (Leng et al., 2024), as well as its performance on generic
LVLM benchmarks and alternative baselines—underscoring its robustness and generalizability. Together,
these findings reinforce VisAlign’s effectiveness in enhancing visual grounding and reducing hallucinations
in LVLMs.

7. Conclusion
We systematically analyze attention distributions in LVLMs concerning hallucinations—outputs lacking
grounding in visual input. Our findings show that popular LVLMs like Video-LLaVA overemphasize text over
visual information, increasing reliance on linguistic priors and hallucinations. To address this, we propose a
simple yet effective method that enriches textual embeddings with visual cues, rebalancing attention and
improving the model’s use of visual information. This results in significantly reduced hallucinations and
more semantically accurate, visually faithful outputs. We validate our approach across multiple challenging
hallucination benchmarks, consistently achieving substantial improvements. We hope these insights inspire
further research to better leverage visual data, reduce hallucinations, and enhance the reliability of multimodal
reasoning in LVLMs.
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8. Limitations and Future work

In this work, we identify an inherent bias in prevailing LVLM architectures toward the language modality,
largely resulting from the common practice of simply appending visual embeddings to the input text sequence.
To address this, we propose a simple yet effective method that refines textual embeddings by integrating
average-pooled visual features. Our approach demonstrably improves visual grounding and significantly
reduces hallucinations on established benchmarks. While average pooling offers a straightforward, robust,
and efficient means of incorporating visual information, we believe that more sophisticated fusion methods
could further enhance visual grounding and cross-modal alignment. Given that the primary focus of this
work is to highlight the modality imbalance and its impact on hallucinations—and to show that refining
textual embeddings with visual information mitigates this issue—we leave exploration of advanced fusion
strategies for future work.
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A. Appendix

Comparison with existing hallucination mitigation approaches: In the main paper, we showed that
VisAlign significantly reduces hallucinations in Video-LLaVA by improving the attention score distribution
across visual and textual modalities. In this section, we extend our analysis by comparing VisAlign with
other state-of-the-art (SOTA) hallucination mitigation methods. As noted in the Related Work section (2),
inference-time strategies currently represent the leading approaches for mitigating hallucinations. These
methods intervene during the decoding stage to guide the model toward generating outputs that are more
aligned with the visual input.

We focus on Visual Contrastive Decoding (VCD) (Leng et al., 2024), a strong inference-time SOTA method.
VCD introduces a contrastive re-ranking mechanism, wherein multiple candidate responses are sampled
from the model and scored based on both linguistic likelihood and visual alignment. This alignment is
computed using a cross-modal similarity function that penalizes syntactically fluent yet visually inconsistent
outputs. By re-ranking candidates, VCD encourages the model to favor generations that are both semantically
coherent and grounded in the visual input—effectively reducing hallucinations without additional fine-tuning.
While model-agnostic and lightweight, such inference-time methods complement VisAlign, which proactively
mitigates hallucinations by refining representations during training.

Table 5 compares the effectiveness of VisAlign and VCD applied to Video-LLaVA, both individually and
combined. VisAlign outperforms VCD alone, notably improving accuracy (54.5 57.09) and F1-score (68.6
69.63). While VCD delivers incremental gains by refining output selection during inference, VisAlign achieves
more substantial improvements by addressing modality imbalance during training. When combined, the
two methods yield the best overall performance, further boosting accuracy to 58.8 and F1-score to 70.04,
demonstrating their complementary strengths.

These results underscore VisAlign’s orthogonality to inference-time techniques like VCD, allowing it to enhance
performance without interference. They also highlight its strong generalizability—VisAlign’s benefits persist
even when integrated with other hallucination mitigation strategies, showcasing its robustness across diverse
settings.

Model Acc Precision Recall F1-Score

Video-LLaVA 54.1 52.14 99.6 68.45
+ VCD (Leng et al., 2024) 54.5 52.38 99.39 68.6
+ VisAlign 57.09 53.9 98.33 69.63
+ VisAlign + VCD 58.8 55.03 96.33 70.04

Table 5: Comparison of baseline Video-LLava with different combination of hallucination mitigation approaches on
POPE-AOKVQA. We evaluate the individual and combined effects of Visual Contrastive Decoding (VCD), and VisAlign.
The combination of both yields the best performance, with VisAlign contributing more significantly to hallucination
reduction than VCD alone.

Model Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR

Video-LLaVA 170 121.66 88.33 135 103.74 101.47 163 161 107 87.5
+VCD (Leng et al., 2024) 170 105.00 76.66 125 100.00 100.88 155.75 154.5 99.25 77.5
+VisAlign 190 131.66 53.33 148.33 103.06 78.24 151 125 94 87.5

Table 6: Comparison of baseline Video-LLava with different combination of hallucination mitigation approaches on
MME.

Effect of VisAlign on generic LVLM benchmarks: In the main paper, we comprehensively evaluated
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VisAlign’s effectiveness in reducing hallucinations across multiple benchmarks, consistently demonstrating
significant and robust improvements. Although our primary focus is on hallucination tasks, to further
investigate VisAlign’s broader impact, we also assess how it influences the baseline model’s performance on
generic vision-language understanding benchmarks.

To this end, we evaluate on the MME benchmark (Chaoyou et al., 2023), a widely adopted diagnostic
suite designed to probe the general capabilities of LVLMs. MME includes various subcategories covering
fine-grained visual understanding and textual grounding tasks, such as Existence, Count, Position, Color,
Posters, Celebrity, Scene, Landmark, Artwork, and OCR. These categories span a range of difficulty, from
low-level visual perception to high-level semantic reasoning, offering a comprehensive lens into overall model
competency.

Table 6 reports category-wise performance comparing the baseline Video-LLaVA, VisAlign and VCD augmented
versions. VisAlign significantly improves upon the baseline in several key subcategories that are sensitive to
visual grounding, such as Existence (170 190), Count (121.66 131.66), and Color (135 148.33). These
improvements align with the primary objective of VisAlign—mitigating hallucinations by enhancing the
model’s attention to visual evidence—demonstrating its positive influence on tasks that demand precise object
recognition and attribute understanding. Moreover, in categories such as OCR and Posters, VisAlign preserves
the same level of performance as the baseline, indicating that it does not compromise tasks unrelated to
hallucination-prone scenarios. However, some categories—such as Position, Celebrity, Scene, Landmark,
and Artwork—show drop in performance. These tasks often require fine-grained spatial reasoning or prior
world knowledge, which may be subtly impacted by VisAlign’s architectural shift toward reinforcing visual
embeddings over memorized linguistic patterns. This suggests that while VisAlign strengthens core visual
grounding, it may introduce minor trade-offs in more specialized or context-dependent tasks.

Another observation from Table 6 is that state-of-the-art hallucination mitigation methods like VCD cause
a universal performance drop or yield no improvements across all MME subcategories. In contrast,
VisAlign demonstrates a more favorable trade-off: while it introduces minor performance reductions in certain
high-level categories, it provides targeted improvements in core grounding tasks without degrading overall
reliability. This contrast highlights VisAlign’s orthogonality to inference-time methods and its potential to
improve multimodal reasoning in a more integrated and generalizable manner.

In summary, while VisAlign is primarily designed to mitigate hallucinations, it also brings positive side effects
on general VLM tasks that benefit from stronger visual grounding. By enriching textual embeddings with visual
information, VisAlign promotes faithful grounding in visual inputs and reduces over-reliance on language
priors. Unlike inference-time methods like VCD—which often reduce performance on generic benchmarks—
VisAlign improves internal representations, preserving or enhancing accuracy in key subcategories like Color,
Count, and Existence. However, this stronger grounding can slightly reduce performance in tasks relying
on memorized knowledge or abstract reasoning (e.g., Landmark or Celebrity), due to reduced influence
from language-driven biases. This trade-off is expected and could potentially be mitigated by training on
larger-scale multimodal datasets—an exciting direction for future work. Overall, VisAlign offers a principled,
generalizable, and training-efficient approach to hallucination reduction while preserving broader multimodal
capabilities.

Performance on additional baselines: In the main paper, we demonstrated that VisAlign significantly
reduces hallucinations in Video-LLaVA by improving attention distribution. To further validate the generality
and robustness of VisAlign, we evaluate its effectiveness on another state-of-the-art LVLM, LLaVA 1.5 (Liu
et al., 2024a). As shown in Table 7, VisAlign consistently enhances performance and reduces hallucinations
when integrated into this baseline as well. These results highlight the broad applicability and effectiveness

17



Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings

Model Acc Precision Recall F1-Score

LLaVA1.5 (%) 69 62.23 97.66 76.02
+ VisAlign (%) 71 64 97.13 77.01

Table 7: Effects of VisAlign on the LLava1.5 baseline, on the POPE-AOKVQA benchmark

of the proposed approach across different LVLMs.

Additional qualitative results: Figure 6 (see next page) presents additional qualitative results on the
Mementos dataset (Wang et al., 2024a). As illustrated, VisAlign enables the model to produce more visually
grounded predictions and significantly reduces hallucinations compared to the baseline Video-LLaVA model.
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Question: Write a description for the given image sequence in a single paragraph, what is happening in this episode?

Video-​LLaVA: The image sequence shows a person using a vacuum cleaner to clean a table. In the first image, the 

person is holding the vacuum cleaner and preparing to clean the table. In the second image, the person is actively 

cleaning the table with the vacuum cleaner. In the third image, the person has finished cleaning the table and is holding 

the vacuum cleaner. In the fourth image, the person is emptying the vacuum cleaner into a trash can. In the fifth image, 

the person is putting the vacuum cleaner back together. In the sixth image, the person is holding the vacuum cleaner 

again, possibly preparing to clean another area. Finally, in the seventh image, the person is emptying the vacuum cleaner 

into a trash can once again.

Video-​LLaVA+VisAlign: In this image sequence, a robotic arm is seen picking up a bottle and placing it on a table. The 

scene is captured in four different frames, showing the progression of the action. The robotic arm is seen in different 

positions in each frame, indicating that it is in the process of picking up the bottle. The bottle is also appears in different 

positions in each frame, indicating that it is being picked up. The overall scene depicts a robotic arm picking up a bottle 

and placing it on a table.

Question: Write a description for the given image sequence in a single paragraph, what is happening in this episode?

Video-​LLaVA: The image sequence shows a brown and white dog playing with a stuffed animal. In the first image, the 

dog is holding the stuffed animal in its mouth}, while in the second image, the dog is biting the stuffed animal. The third 

image shows the dog chewing on the stuffed animal, and the fourth image shows the dog holding the stuffed animal in its 

mouth again. The fifth image shows the dog biting the stuffed animal, and the sixth image shows the dog chewing on the 

stuffed animal. The final image shows the dog holding the stuffed animal in its mouth. Overall, the sequence captures the 

playful and energetic behavior of the dog as it interacts with the stuffed animal.

Video-​LLaVA+VisAlign: In this image sequence, there are two dogs, a brown and white dog and a black and white dog, 

playing together in a fenced area. The brown and white dog is biting the black and white dog's ear, and the black and 

white dog is trying to bite the brown and white dog's face. The two dogs are engaged in a playful interaction, with the 

brown and white dog being the aggressor and the black and white dog being the defender.

Question: Write a description for the given image sequence in a single paragraph, what is happening in this episode?

Video-​LLaVA: In this image sequence, a group of people is gathered together, posing for a photo. They are standing in 

front of a building, and some of them are wearing backpacks. The group consists of at least 12 people, with some 

standing closer to the camera and others further back. The photo captures the essence of a group activity or event, with 

everyone smiling and enjoying the moment.

Video-​LLaVA+VisAlign: In this image sequence, there is a man wearing a black jacket and a hat, standing in front of a 

group of people. The man is taking a selfie with a camera, capturing multiple pictures of himself and the group of people 

around him. The group consists of people of different ages and genders, and they are all posing for the camera. The man 

is taking the pictures from different angles and distances, capturing the whole group in each shot. The scene is a lively 

and fun atmosphere, with everyone enjoying themselves and having a good time.

Question: Write a description for the given image sequence in a single paragraph, what is happening in this episode?

Video-​LLaVA: In this episode, a man is sitting on a chair in a bar, holding a bottle of beer. He is engaged in a 

conversation with another man who is standing nearby. The scene is depicted in three different drawings, each showing a 

different moment in the interaction between the two men. The first drawing shows the man sitting on the chair, while the 

second drawing shows the man standing next to the sitting man. The third drawing shows the man standing in front of the 

sitting man, indicating that the conversation is ongoing. The bar setting is evident from the presence of a bottle of beer 

and a chair, and the overall atmosphere appears to be casual and relaxed.

Video-​LLaVA+VisAlign: In this comic strip, a man is seen sitting at a bar, holding a drink in his hand. Another man is 

standing behind the bar, pouring a drink into a glass. The man sitting is looking at the drink being poured, and appears to 

be enjoying the moment. The scene is set in a bar, with bottles and glasses visible in the background. The man pouring 

the drink is wearing a tie, and the man sitting is wearing a suit. The overall atmosphere of the scene is relaxed and 

casual, with a hint of humor as the man pouring the drink is exaggerating the pouring motion.

Figure 6: Qualitative results on the Mementos benchmark (Wang et al., 2024a). Text highlighted in red indicates
hallucinated content, while text in blue shows the corresponding corrections.
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